Como saber em qual quadrante está o ângulo negativo?

Como saber em qual quadrante está o ângulo negativo?
Note que o círculo possui raio medindo uma unidade e é dividido em quatro quadrantes, facilitando a localização dos ângulos trigonométricos, de acordo com a seguinte situação: 1º quadrante: abscissa positiva e ordenada positiva → 0º < α < 90º. 2º quadrante: abscissa negativa e ordenada positiva → 90º < α < 180º.
Em que quadrante da circunferência Trigonométrica está localizado o ângulo de 150º?
Como α = 150° pertence ao segundo Quadrante, então usamos a fórmula de redução: 180° – α.
Qual o segundo quadrante do quadrante?
- Primeiro quadrante: 0º < x < 90º. Segundo quadrante: 90º < x < 180º. Terceiro quadrante: 180º < x < 270º. Quarto quadrante: 270º < x < 360º
Quais os valores dos ângulos?
- De acordo com o quadrante em que está inserido, os valores do seno, cosseno e tangente variam. Ou seja, os ângulos podem apresentar um valor positivo ou negativo. Para compreender melhor, veja a figura abaixo:
Quais são os quadrantes do círculo trigonométrico?
- Quando dividimos o círculo trigonométrico em quatro partes iguais, temos os quatro quadrantes que o constituem. Para compreender melhor, observe a figura abaixo: De acordo com o quadrante em que está inserido, os valores do seno, cosseno e tangente variam. Ou seja, os ângulos podem apresentar um valor positivo ou negativo.
Quais são os ângulos notáveis?
- Ângulos Notáveis. No círculo trigonométrico podemos representar as razões trigonométricas de um ângulo qualquer da circunferência. Chamamos de ângulos notáveis aqueles mais conhecidos (30°, 45° e 60°). As razões trigonométricas mais importantes são seno, cosseno e tangente: Relações Trigonométricas. 30°.